+1(978)310-4246 credencewriters@gmail.com
  

Introduction to Logic Use all the rules of inference (eight implication rules and ten replacement rules) to complete the proofs. Provide the justification for each step that you derive.[18]     1. ∼ (P ⋅ Q)            2. (P ⋅ Q) ν (R ⋅ S)                         / Q ν S[20]    1. T ν S           2.  ∼ T           3. (S ν S) ⊃ (∼ P ν R)                   / ∼ R ⊃ ∼ P[22]      1. (∼ P ν Q) ⊃ R             2. (S ν R) ⊃ P             3. P ⊃ Q                              / Q[24]    1. ∼ Q            2. R ⊃ Q             3. ∼ S ⊃ M             4. R ν (S ⊃ Q)                               / M ν K[28]     1. P ⊃ (Q ν R)              2. (S ν T) ⊃ R            3. ∼ Q ⋅ ∼ R                              / ∼ P ⋅ ∼ (S ν T)[32]     1. ∼ P ⊃ (Q ν R)            2. (S ν Q) ⊃ R            3. ∼ R                                      / P[34]     1. C ⊃ F             2. A ⊃ B             3. ∼ F ⋅ A             4. ∼ C ⊃ (B ⊃ D )                               / B ⋅ D[38]      1. P ⊃ (R ν S )              2. ∼ [ (∼ P ν ∼ Q) ν (R ν ∼ L) ]                           / S

  
error: Content is protected !!